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We develop a model to describe the spreading of a reacting liquid which is injected
at a steady rate into a permeable rock. We focus on the case in which there is a
density difference between the host reservoir fluid and the injected liquid. We examine
reactions which lead to precipitation and a decrease in permeability or dissolution and
an increase in permeability. In both cases, we assume the reaction is rapid compared
to the speed of the flow. As the current spreads under gravity, we show that the
interface between the injected fluid and the original fluid and also the reaction front,
may be described by similarity solutions. The morphology of the two interfaces is
controlled by two parameters: the permeability ratio across the reaction front, k,
and the speed of the reaction front as a fraction of the interstitial speed, λ. For
a precipitation reaction, the reaction front lags some distance behind the leading
edge of the region occupied by the injected fluid, and tends to terminate in a sharp
vertical front. In contrast, for a dissolution reaction, the reaction front migrates as a
gravity-driven finger along the base of the formation. In the case of large changes in
permeability, kλ > 1, this finger advances to the front of the flow, whereas for smaller
increases in permeability, kλ < 1, the finger is overrun with injected fluid which has
already reacted and passed through the reaction front. We illustrate how these results
are affected if the density of the reacting fluid decreases across the reaction zone. In
the case of precipitation, small changes in density smooth out the leading edge of
the reaction front, whereas large changes in density lead to slumping of the reaction
front along the base of the current, and ultimately it extends to the nose of the flow.
For dissolution reactions, the decrease in density across the reaction front causes the
lateral extent of the finger to increase. As a result the critical value of the permeability
ratio, k, for which the reaction front reaches the nose of the current decreases.

1. Introduction
There are numerous different types of reactions which may arise in porous rocks

(Phillips 1991). These include frontal reactions, which advance through the formation
with the injected fluid; gradient reactions, which arise when the fluid moves through
a temperature gradient in the formation because of the temperature dependence of
the solubility of the minerals in solution; and mixing reactions, which arise when
two fluids of different composition mix in the formation. In this paper, we focus
on frontal reactions which are typically associated with the injection of fluid of
one composition into a porous formation initially saturated with fluid of a second
composition (Chadam et al. 1986; Ortoleva et al. 1987; Hinch & Bhatt 1990; Ormond
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& Ortoleva 2000). Such reactions can have an important impact on the flow as they
change the properties of the rock, and in particular, the permeability.

Precipitation of minerals in the pore spaces decreases the permeability. Such fronts
tend to be dynamically stable in the sense that the permeability increases and therefore
the pressure gradient decreases in the direction of flow. In contrast, a dissolution front
leads to formation of higher permeability rock near the source of the injected fluid.
In turn, this leads to an adverse pressure gradient across the reacting front, with the
permeability decreasing in the direction of flow. As a consequence, the dissolution
front may become unstable to a fingering instability which leads to the formation of
preferential flow channels (Ortoleva et al. 1987; Hinch & Bhatt 1990; Keleman et al.
1995). These flow channels result in the injected fluid bypassing much of the original
formation, and tend to produce reaction veins within the original formation (Ortoleva
et al. 1987; Phillips 1991).

Although the flow and stability of such reaction fronts have been studied for purely
pressure driven flow, in many systems, the density of the injected fluid will be different
from the host fluid, owing to the different chemical composition of the fluids. In such
a regime, the buoyancy forces associated with the difference in density between the
two fluids, rather than an externally imposed pressure, may control the flow. The
purpose of this paper is to examine the morphology and rate of spreading of the
reaction front in such a gravity driven flow. Following the predictions of models of
gravity currents in porous rocks (Huppert & Woods 1995; Woods & Mason 2000),
we might expect that the dense injected liquid will spread along the lower boundary
of the reservoir leading to a different morphology of the reaction front which trails
behind.

In § 2, we develop a model to describe the evolution of the injected liquid and of
the reacting interface with time. In § 3, we develop a series of similarity solutions for
this flow in the case where the density difference between the injected liquid and the
host fluid remains approximately constant across the reaction front. These solutions
identify the important differences between precipitation and dissolution reactions. In
§ 4, we generalize the analysis to allow for changes in density of the injected fluid
across the reaction front. In § 5, we discuss the relevance of the modelling both for
industry and in natural flow regimes, and draw some conclusions in § 6.

2. The model
2.1. Reaction dynamics

Numerous workers have studied the structure of reaction fronts associated with a
uniform flow through a porous rock (Ortoleva et al. 1987; Hinch & Bhatt 1990;
Phillips 1991). In the reaction zone, the concentration of reactant (moles per unit
volume) in the liquid falls from the upstream source concentration co to zero, while
the concentration of mineral in the matrix (moles per unit volume) increases from
zero, upstream of the reaction zone, to the unreacted value so downstream (figure 1).
The reaction may be characterized by a kinetic rate constant, τ say, and a reaction
law that for a given reaction, υ moles of reactant A in the solid react with one mole
of reactant B in the fluid. If the fluid migrates through a porous rock with Darcy
speed u, then any reaction zone associated with the flow will extend a distance of
order uτ/φ. For times t long compared to τ, the reaction front is localized compared
to the zone which is occupied by the injected fluid (e.g. Phillips 1991; Hinch & Bhatt
1990). For a localized reaction front, the ratio of the speed of the reaction front



On gravity-driven flow through a reacting porous rock 229

Reacted fluid
unreacted rock

Unreacted fluid
reacted rock

Reaction
zone

co

λut /φ
ut /φ

uτ /φ

so

Figure 1. Illustration of a reaction zone showing the liquid reactant supplied upstream of the front
and the distribution of reactant on the rock as a function of position across the reaction front.
Concentration of reactant —–, in the liquid and - - - -, in the rock matrix.

to the interstitial speed of the fluid, λ say, may be found by using a simple mass
balance. If a steady, one-dimensional flow, with Darcy speed u, advances into a rock
of porosity φ, then after time t, the region invaded with liquid extends a distance
ut/φ ahead of the source, while the reaction front is located a distance λut/φ ahead
of the source (figure 1). Therefore, a volume of rock λ(1 − φ)ut/φ, which contains
λ(1− φ)utso/φ moles of reactant A, has reacted with a volume φ(1− λ)ut/φ of fluid
containing φ(1− λ)utco/φ moles of reactant B. Since the reaction requires υ moles of
solid reactant A per mole of fluid reactant B we deduce that

λ =
φco

υ(1− φ)so + φco
. (1)

The reaction may lead to an increase or a decrease in the porosity and permeability
of the rock. The relation between porosity and permeability is complex and depends in
detail on the structure of the porous matrix. Typically, small changes in porosity may
lead to much larger changes in permeability, especially if the permeability is controlled
by narrow throats which connect pore spaces. For example, the porosity–permeability
relation in fractured rock is quite different from that in a porous sandstone or other
sedimentary deposit (Dullien 1992). For simplicity, we assume that the change in
porosity across the reaction zone is so small that we can take it to be a constant,
while the permeability changes from value k1 downstream to value k2 upstream of
the reaction front. This approximation is likely to be most applicable to situations in
which the reaction causes small changes to the precipitate deposit in the pore throats,
since these may provide the main resistance to the flow, yet contribute only a small
part of the porosity (Dullien 1992). ρ denotes the density of the fluid originally in
place in the reservoir. We denote the density of the injected fluid as ρ+∆ρu and ρ+∆ρl
downstream and upstream of the reaction front. In this work, we focus on the case
that 0 > ∆ρl > ∆ρu so that the density of the reacted fluid is intermediate between
that of the relatively dense injected fluid and the relatively buoyant formation fluid,
leading to the flow configuration shown in figure 2.

2.2. Flow dynamics

We now consider the motion of dense injected fluid which spreads along the base of
the reservoir. We model a one-dimensional flow as appropriate for injection of fluid
from a horizontal well, which acts as a line source. The modelling approach may
be readily extended to include axisymmetric flows from a point source, but this is
beyond the scope of the present study. After some time, the fluid will form a thin,
laterally extensive current (figure 2) in which the vertical pressure is approximately
hydrostatic (Huppert & Woods 1995). We denote the upper surface of the injected
fluid as hu(x, t) and the upper surface of the reaction front, which lags behind the
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Figure 2. Schematic illustrating the motion of a gravity driven reaction front and the injected
dense liquid.

injected fluid, as hl(x, t) (figure 2). If y denotes the elevation of a point above the
lower boundary, then the pressure at the point (x, y) has value

p = po + ρg(H − y) + ∆ρlg(hl − y) + ∆ρug(hu − hl) for 0 < y < hl, (2)

corresponding to the region of reacted rock flooded with unreacted injected liquid
and has value

p = po + ρg(H − y) + ∆ρug(hu − y) for hl < y < hu, (3)

corresponding to the region of unreacted rock flooded with the reacted injected liquid.
Here, po is the reference pressure at height H above the boundary. The speed of the
flow in the region hu > y > hl , which is filled with injected but reacted fluid, which
has passed through the reaction zone is given by Darcy’s law

uu = −k1g∆ρl
µ

∂hu

∂x
, (4)

while the speed of the injected but unreacted fluid advancing towards the reaction
zone is

ul = −k2g

µ

[
(∆ρl − ∆ρu)

∂hl

∂x
+ ∆ρu

∂hu

∂x

]
. (5)

The rate of ascent of the reaction front, ∂hl/∂t is given from the conservation of
mass noting that the reaction front migrates at a fraction λ/φ of the vertical transport
velocity (equation (1)),

φ
∂hl

∂t
= −λ∂hlul

∂x
. (6)

The remainder of this vertical flux, (1 − λ)/(∂hlul/∂x)φ passes through the reaction
front into the upper layer of injected fluid where it causes the upper layer to deepen
according to the relation

φ
∂(hu − hl)

∂t
= −(1− λ)∂hlul

∂x
− ∂(hu − hl)uu

∂x
. (7)

Here, the last term on the right-hand side corresponds to the divergence of the fluid
flux in the upper layer, which can also change the depth of the upper layer. By
combining the expressions for ul and uu in terms of hl and hu with equations (6) and
(7) we are able to derive two nonlinear equations for the evolution of the reaction
front and the leading edge of the injected fluid in this gravity driven flow. To simplify
the algebra, it is useful to introduce two dimensionless variables. The buoyancy ratio
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is defined as

R = ∆ρl/∆ρu, (8)

and the permeability ratio

k = k2/k1. (9)

We also introduce a dimensional scale for the velocity

S = k1∆ρug/φµ. (10)

This leads to the governing equations

∂hl

∂t
= Skλ

∂

∂x

(
hl
∂hu

∂x
+ (R − 1)hl

∂hl

∂x

)
, (11)

and

∂hu

∂t
= S

∂

∂x

[
((k − 1)hl + hu)

∂hu

∂x
+ k(R − 1)hl

∂hu

∂x

]
. (12)

It may be seen from equations (11) and (12) that the three controlling parameters
are the permeability ratio across the reaction front, k, the buoyancy ratio, R, and
the reaction parameter λ. Since there are three controlling parameters, the range of
flow behaviour is varied and it is instructive, in the first instance, to consider cases in
which R = 1 so that the fluid buoyancy does not change as a result of the reaction.
This may occur if saline fluid, carrying a low concentration of reactant which has
a negligible effect on the density, displaces relatively fresh host water in the porous
layer. This situation may arise, for example, during a replacement reaction, such as
the dolomitization of limestone, when magnesium rich sea-water displaces relatively
fresh water from the formation (Phillips 1991).

3. Flows with no density change across the reaction, R = 1

In this situation, the governing equations reduce to the simpler form

φ
∂hl

∂t
= Skλ

∂

∂x

(
hl
∂hu

∂x

)
, (13)

and

φ
∂hu

∂t
= S

∂

∂x

(
[hu + (k − 1)hl]

∂hu

∂x

)
. (14)

Since these equations are coupled nonlinear diffusion-type equations, then for a
constant injection rate, we expect shape-preserving self-similar solutions. For a steady
injection rate Q per unit length, we seek solutions of the form

hl = γ(ωt)1/3fl(η), hu = γ(ωt)1/3fu(η), (15)

where η = x/γ(ωt)2/3, γ = Q/S and ω = S2/Q. Note that γ has units of length and ω
has units 1/time. Now the shape functions fl and fu satisfy the relations

fl − 2η
dfl
dη

= 3λk
d

dη

(
fl

dfu
dη

)
, (16)
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and

fu − 2η
dfu
dη

= 3
d

dη

(
(fu + (k − 1)fl)

dfu
dη

)
. (17)

The shape functions fl and fu represent the shape of the reaction front and of the
leading edge of the injected liquid which drives the reaction. The form of the solution
depends critically on the two parameters k and λ. We have solved the nonlinear
coupled equations (16) and (17) numerically to find the shape functions fu and fl .

3.1. Boundary conditions

In solving the equations, we require a number of boundary conditions. First, at the
source, all the fluid flux consists of unreacted fluid. This requires that

(fl − fu)dfu
dη

= 0 at η = 0. (18)

In order that there is a net flux, this requires that fl = fu at η = 0. Secondly, at the
source, the flux of unreacted fluid is a constant, so that

−φkfl dfu
dη

= 1 at η = 0. (19)

This provides a relation between fl(0) and (dfu/dη)(0). From equations (16) and (17),
we may then determine dfu/dη and d2fu/dη

2 in terms of fl at η = 0. Finally, the
solutions should satisfy the conservation of fluid∫ ηe

o

fu dη =
1

φ
, (20)

and the conservation of reactant, as expressed by the relation∫ ηe

o

fl dη =
λ

φ
. (21)

Depending on the conditions, the reaction zone may or may not extend the full length
of the current, η = ηe.

In the case where the reaction zone does not reach the end of the current, the flow
of reacted liquid through the unreacted rock ahead of the reaction zone is governed
by the relation

fu − 2η
dfu
dη

= 3
d

dη

(
fu

dfu
dη

)
. (22)

At the point where the reaction zone ends, η = ηr , the depth of the upper interface,
fu, varies continuously and the total mass flux is continuous

fu
dfu
dη

∣∣∣∣
ηr+

= (fu + (k − 1)fl)
dfu
dη

∣∣∣∣
ηr−
. (23)

On solving the equations, three types of solution emerge, and we describe these
below. We note here, however, that although equations (16) and (17) are second
order in fu, they are only first order in fl and so may admit solutions which are
discontinuous in fl while being continuous in fu. Indeed, we find that, when k < 1, a
shock forms at the leading edge of the reaction front where fl suddenly decreases to
zero. In contrast, when k > 1, the dissolution zone at the base of the current extends
smoothly to zero depth.
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Figure 3. Calculations showing the shape of the reaction front and the distribution of the injected
liquid in the case where there is no change in permeability due to the reaction. Calculations are
shown for permeability ratio k = 1 with (a) λ = 0.2, (b) 0.5, (c) 0.7.

3.2. Constant permeability solutions, k = 1

If there is no change in the permeability associated with the reaction, k = 1, then the
structure of the solution depends only on the value of λ (figure 3). For small λ, a
large quantity of liquid is required to react with unit mass of rock, and hence a large
intrusion of reacted fluid develops ahead of the reaction front (figure 3a). For larger
values of λ, less liquid is required per unit mass of reacted rock, and so the reaction
zone largely overlaps with the region occupied by injected fluid (figure 3c).

3.3. Dissolution solutions, k > 1

If the reaction leads to dissolution of the rock, then the injected fluid tends to run
rapidly through the high-permeability reacted zone along the base of the layer before
moving across the reaction front and into the low-permeability host rock (figure 4).
This leads to the formation of a narrow high-permeability channel along the lower
boundary of the reservoir. As fluid passes through this reaction front into the lower
permeability host rock, the flow decelerates, and the fluid tends to accumulate above
the reaction front. If the speed of the reaction front is similar to the interstitial flow
speed (λ ∼ 1) or there is a large increase in permeability as a result of the reaction,
k � 1, then the reaction zone extends to the nose of the current (figure 4b–d ). We
describe this as a strong dissolution reaction. However, if a very large mass of liquid
is required to react with unit mass of rock (λ� 1) or there is a very small change
in permeability, then the reacted fluid is able to run far ahead of the reaction front
(figure 4a). We call this a weak dissolution reaction. A numerical parameter study
(figure 5) has identified that the transition from one regime to the other occurs
when kλ = 1. The origin of this criterion may be seen by considering the asymptotic
behaviour of the current near the nose. From equations (16) and (17), we find that if
both layers extend to the nose of the flow, then near the nose,

fu ∼ 2ηe
3λk

(ηe − η) for η < ηe, (ηe − η)� ηe, (24)

fl ∼
(
kλ− 1

k − 1

)
2ηe
3λk

(ηe − η) for η < ηe, (ηe − η)� ηe. (25)

In order that both fl > 0 and fu > 0, we require that kλ > 1. In the limiting condition
kλ = 1, the depth of the reaction zone just falls to zero at the nose, whereas for
smaller values of kλ, the leading edge of the reaction zone lags behind the nose of
the current.
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Figure 4. Calculations showing the shape of the reaction front and the distribution of the injected
liquid in the case of a dissolution reaction. Calculations are shown for permeability ratios k = 2
with (a) λ = 0.2, (b) 0.5, (c) 0.8, and for (d ) k = 5 with λ = 0.8. Cases (a) and (b) correspond to
weak dissolution reactions, whereas cases (c) and (d ) correspond to strong dissolution reactions.
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Figure 5. Regime diagram illustrating how the different regimes of precipitation, strong dissolution
and weak dissolution reactions vary with the chemical reaction constant λ and the permeability
ratio k. The curve kλ = 1 arises from the asymptotic analysis of the nose of the current.

The difference between strong and weak dissolution reactions may have important
implications when monitoring the flow of tracer injected with the liquid since the fluid
may advance further than the reaction zone itself.

3.4. Precipitation solutions, k < 1

The case k < 1 corresponds to a precipitation reaction in which the permeability
increases across the the reaction front. In this case, we expect that the reaction front
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will remain close to the injection site, while the reacted fluid can run far ahead of
the reaction front as it moves into the original, high permeability rock. According
to the equations, the gradient of the depth of the reaction front, dfl/dη, decreases
until it reaches a point at which it becomes singular. Physically, this singularity arises
because the reacted fluid can migrate through the high-permeability unreacted rock
more rapidly than it is supplied from the low-permeability reacted rock. The location
of the discontinuity, η = ηs, may be determined by using the reaction law (§ 2) which
relates the flux of unreacted fluid supplied to the shock, u, say, with the speed of the
shock dx/dt according to the relation

dx

dt
= λu. (26)

This may be expressed in dimensionless terms using equations (16) and (17) as

dfu
dη

=
−2ηs
3kλ

, (27)

where ηs is the location of the shock.
At the shock, dfu/dη is not continuous. In order to conserve flux, we apply the

jump condition (23) relating the flux upstream and downstream of the shock. Using
these conditions, we have found a family of solutions which identify how the structure
of the solution changes with λ and k (figure 6). For small λ, a very large volume
of fluid is required to react with a given volume of rock, and so the reaction front
remains close to the source (figure 6a). As λ increases, less fluid is required to react
with a given volume of rock, and so the reacted region extends further into the
current (figure 6b). For very large λ, only a small amount of liquid is required to
react with a given volume of liquid, and so the reaction front extends nearly as far
as the leading edge of injected fluid. As a result, the shock at the leading edge of
the reaction zone becomes very small (figure 6c). As the permeability ratio associated
with the precipitation increases, the rock near the source becomes progressively more
clogged with precipitate. As a result, the lateral extent of the precipitation zone
decreases and it deepens, with the reacted fluid running far ahead of the reaction
zone (figure 6d ).

3.5. Lateral extent of the reaction zone within the injected liquid

One of the interesting features of these similarity solutions is that the leading edge of
the reaction front, ηf , may lag behind the nose of the current, ηe. In figure 7, we present
a series of numerical calculations which illustrate how the ratio N = ηf/ηe varies
with the two control parameters, the permeability ratio k and the reaction constant
λ. The calculations show that for both dissolution (solid lines) and precipitation
(dashed lines) reactions, N increases with λ. Essentially, as progressively less fluid is
required to react with a given volume of rock, the mass of reacted fluid occupies a
progressively smaller part of the region occupied by injected fluid. The calculation
also illustrates that for precipitation reactions, the reaction front only extends to
the nose of the current in the limiting situation that λ = 1. This limit corresponds
to the case in which the fluid effectively has an inexhaustible supply of reactant.
Otherwise, there is a region at the nose of the current, ahead of the reaction zone,
in which the rock is flooded with reacted source fluid. In contrast, as described in
§ 3.2, for dissolution reactions, the reaction front reaches the nose of the current when
kλ > 1.
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Figure 6. Calculations showing the shape of the reaction front and the distribution of the injected
liquid in the case of a precipitation reaction. Calculations are shown for permeability ratios k = 0.5
with (a) λ = 0.2, (b) 0.5, (c) 0.8, and for (d ) k = 0.1 with λ = 0.5.

4. Reactions involving a decrease in the fluid density, R > 1

We now extend the analysis to account for a change in density of the fluid as it
passes through the reaction front. This corresponds to the case in which the reacting
mineral dissolved in the liquid also contributes substantially to the density difference
between the injected and formation fluids. We focus on the case in which the reaction
leads to a decrease in the buoyancy of the fluid, so that the density of the reacted
fluid ahead of the reaction front lies between that of the relatively high-density
unreacted source fluid and the relatively low-density original formation fluid. In this
case, the advancing flow is gravitationally stable and, again, we expect self-similar
solutions to develop. Using the full governing equations of § 2, we again seek similarity
solutions for a constant injection rate Q. Now, the shape functions fu and fl satisfy
the relations:

fl − 2η
dfl
dη

= 3λk
d

dη

(
fl

(
dfu
dη

+ (R − 1)
dfl
dη

))
, (28)

and

fu − 2η
dfu
dη

= 3
d

dη

(
(fu + (k − 1)fl)

dfu
dη

+ k(R − 1)fl
dfl
dη

)
, (29)

and the integral conditions for the global conservation of mass and reactant,
eqns (20, 21) ∫ ηe

0

fu dη =
1

φ
,

∫ ηe

0

fu dη =
λ

φ
. (30)
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Figure 7. Graph showing the variation with λ of the position of the leading edge of the reaction
zone as a fraction of the extent of the whole current. Calculations are shown for permeability
ratios k = 0.1, 0.5, 1.0, 1.2, 2.0. Solid lines represent dissolution reactions while the dashed lines show
precipitation. No density change, R = 1.

4.1. Boundary conditions

The additional diffusive terms in the governing equations associated with the different
densities of the reacted and unreacted fluid lead to some important structural changes
in the form of the solution. Most significantly, the equations are now second order in
both fu and fl and so the shock-type solutions we found for the precipitation reactions
are now smoothed out, and the depth of the reaction front decreases continuously.

Furthermore, owing to the additional flow associated with the density jump across
the reaction, the depth of the layer of reacted fluid need no longer be zero at the
source. This may be seen by noting that the dimensionless flux in the upper layer of
reacted fluid, qu, takes the form

qu = −(fu − fl)φkdfu
dη

. (31)

Since all the fluid flux at the source is unreacted fluid, it follows that qu = 0 and so,
from equation (31),

either fu = fl or
dfu
dη

= 0. (32)

Since the dimensionless flux in the lower layer ql = 1 at the source, then using (31)
the two different sets of boundary conditions at η = 0 may be expressed as

−φkfl
(

dfu
dη

+ (R − 1)
dfl
dη

)
= 1 with fu = fl, (33)

or

−φkfl(R − 1)
dfl
dη

= 1 with
dfu
dη

= 0, fu 6= fl, (34)

In the following sections, we illustrate how there is a continuous transition from
one of these regimes to the other as various parameters change. By combining these
boundary conditions with the nonlinear coupled equations, we have determined the
effect of gravity on the shape of the evolving reaction fronts, and we present these
results in the following sections.
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Figure 8. Structure of the reaction front and the injected liquid in the case where the fluid
density decreases across the reaction front. Calculations are shown for precipitation reactions with
parameter values (a)–(d ) k = 0.8, λ = 0.5 with (a) R = 1.005, (b) 1.1, (c) 4.0, (d ) 31.0, and for (e)–(h)
k = 0.5, λ = 0.9 with (e) R = 1.05, ( f ) 1.5, (g) 7.0, (h) 21.0.

4.2. Precipitation reactions

We first examine the role of a density change in modifying the structure of pre-
cipitation reactions. The main consequence of a density change across the front is
that the depth of the reaction zone varies continuously, and the shock-like solutions
described in § 3 are smoothed. For small density changes, the shocks only spread
locally (figure 8a, e), and the solutions are similar to those presented in § 3. However,
as the density ratio is increased, the gravity driven slumping of the unreacted fluid
begins to change the structure of the flow and the lateral extent of the reaction zone
increases substantially (figure 8b, f ). Eventually, for sufficiently large values of R, the
decrease in buoyancy across the reaction front causes the injected fluid to slump under
the reacted fluid, and so the depth of the reacted fluid above the source increases
(figure 8c). The critical value at which a layer of reacted fluid begins to accumulate
above the source, as a function of R and λ, is shown with the dashed line in figure 9.
As λ increases, the mass of reacted fluid above the reaction front decreases, and so
reacted fluid is only able to accumulate above the source if the decrease in buoyancy
across the front increases.
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Figure 9. Regime diagram illustrating the different morphology of precipitation reactions, which
depend on whether the reaction front extends the full length of the current and whether there is a
finite depth of reacted fluid above the source. Calculations show the variation with the density ratio
R and λ and are shown for one value of the permeability ratio, k = 0.5. —–, the predicted transition
at which the leading edge of the reaction front just reaches the leading edge of the current. - - - -,
the critical point at which a finite layer of reacted fluid accumulates above the source.

For sufficiently large R, the reaction front also spreads right to the nose of the
current. All the reacted fluid then lies above the reaction zone (figure 8d ) with the
majority of the reacted fluid located near the source (figure 8h). The critical value
of R at which the reaction front reaches the nose of the current may be found by a
similar asymptotic analysis of the structure of the nose to that presented in § 3.3. If
the leading edge of the reaction zone coincides with the leading edge of the current,
then near the nose, the coupled equations have asymptotic solution

fu ∼ 2ηe
3kλ(1 + α(R − 1))

(ηe − η) for η < ηe, ηe − η � ηe, (35)

fl ∼ α 2ηe
3kλ(1 + α(R − 1))

(ηe − η) for η < ηe, ηe − η � ηe, (36)

with

α =
1 + k(R − 1)λ− k +

√
(k − 1− k(R − 1)λ)2 − 4k(R − 1)(1− λk)

2k(R − 1)
. (37)

In order for this solution to be possible, fu > 0 and fl > 0, we require that

λ >
−(k + 1) + 2

√
kR

k(R − 1)
. (38)

Condition (38) is shown with a solid line in figure 9, and is seen to be in very good
accord with our numerical calculations of the transition at which the reaction front
just reaches the nose of the current.

4.3. Dissolution reactions

In dissolution reactions, the decrease in fluid density across the reaction front causes
an increase in the lateral extent of the high-permeability zone at the base of the
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Figure 10. Structure of the reaction front and the injected liquid in the case where the fluid density
decreases across the reaction front. Calculations are shown for dissolution reactions with parameter
values (a)–(d ) k = 1.2, λ = 0.5 with (a) R = 1.01, (b) 1.1, (c) 2.0, (d ) 31.0, and for (e)–(g) k = 2.0,
λ = 0.7 with (e) R = 1.0, ( f ) 1.2, (g) 6.0. Cases (a)–(c) correspond to weak dissolution reactions,
whereas cases (d )–( f ) correspond to strong dissolution reactions.

reservoir (figure 10a, b). Now, as in § 4.2, the criterion as to whether the reaction
front extends to the nose of the current is given from the asymptotic behaviour of
the currents at the nose of the current. This solution has exactly the same form as
(35)–(37) with the critical condition at which the reaction front just reaches the nose
of the current being given by the equality in equation (38). Again, this prediction,
shown as the solid line in figure 11, is in very good accord with our full numerical
calculations of the location of the transition. Note also that the effect of a density
change across the dissolution reaction now causes the upper layer to develop a non-
zero depth (figure 10c, d, f ) at η = 0 as λR increases beyond a particular value, which
depends on k, shown as a dashed line in figure 11.

4.4. Parametric study of the extent of reaction zone as a fraction of the current length

As in § 3, it is of interest to explore the extent of the reaction zone as a fraction of
the total current. The general trend for both dissolution and precipitation reactions
is similar, as shown in figure 12, in which we present calculations of the variation of
the ratio N = ηf/ηe with R and λ for a given k. The calculations show that for both
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Figure 11. Regime diagram illustrating the different regimes of dissolution reactions, which depend
on whether the reaction front extends the full length of the current and whether there is a finite
depth of reacted fluid above the source. Calculations show the variation with the density ratio R
and λ and are shown for one value of permeability ratio k = 1.2. —–, the predicted transition at
which the leading edge of the reaction front just reaches the leading edge of the current. - - - -, the
critical point at which a finite layer of reacted fluid accumulates above the source.
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Figure 12. Graphs showing the effect of the density ratio R on the maximum lateral extension of
the reaction zone as a fraction of the total length of the current. (a) Precipitation reactions are
shown for k = 0.5 and λ = 0.1, 0.3, 0.5, 0.7, 0.9. (b) Dissolution reactions are shown for k = 1.2 and
λ = 0.1, 0.3, 0.5, 0.7.

dissolution reactions (figure 12a) and precipitation reactions (figure 12b), the ratio
N increases with R. As the reacted fluid becomes progressively lighter, the relatively
dense unreacted fluid runs out under the less dense reacted fluid. As illustrated in
§ 4.2, these calculations show that, with a density jump across the reaction front,
precipitation reactions can now extend to the nose of the current if the buoyancy
decrease across the reaction is sufficiently large.

5. Applications
Although the theoretical model presented in this work represents a considerable

simplification of reaction fronts migrating through real permeable media, it is instruc-
tive to explore the implications of the model for both natural and engineered flows
which drive reactions in permeable rock. According to our model, the length of the
current x ∼ γ(ωt)2/3 while the height of the current, h ∼ γ(ωt)1/3, and so after a time
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of order 1/ω, the reaction zone begins to become controlled by gravity, with x > h,
and subsequently spreads according to our model.

In a natural context, the formation fluid in a permeable reservoir may be displaced
by fluid of different composition owing to fracture formation connecting the reservoir
to another higher-pressure permeable layer (Phillips 1991), or perhaps owing to
sea-level change. Such flushing events may be responsible for the creation of so-
called secondary porosity, often present in hydrocarbon reservoirs as a result of the
dissolution of minerals subsequent to the geological emplacement of the reservoir.
The time scale of the flows produced by such processes may be of order 10–104 years.
In laterally extensive permeable strata, with permeability 10−13 m2, and with density
contrasts of order 100 kg m−3, the typical values for the gravitational flow speed
S ∼ 10−7 m s−1. The typical flow speed driven from a neighbouring high-pressure
aquifer depends on the resistance to flow in any fractures connecting the two layers,
but flow rates Q of order 10−6 m2 s−1 might be plausible for a flow driven by a
pressure difference of 106 Pa, over a distance 100 m along a fracture of permeability
10−11 m2 and width 10−3 m. With these values of Q and S , we find ω might be of
order ω = 10−8 while γ might be of order 10. We deduce that the flow will spread
into the layer and become controlled by gravitational forces after a time of order 10
years. On time scales comparable to or longer than this, the assumption of chemical
equilibrium should be appropriate, as used in the model presented above. In the case
of dense input fluid, the dissolution front would then spread as a narrow reaction
layer along the base of the layer, extending to a distance of order 1000 m while only
deepening to depths of order 10–100 m over the subsequent 1000 years. Indeed, if
the permeability contrast associated with the dissolution reaction is sufficient, then
the shape of the current will in fact increase the horizontal extent of the current
by up to a factor of 10, as shown in the calculations of §§ 3 and 4. As a result,
we might expect reaction zones to be horizontally extensive, and confined vertically
above impermeable horizons in the formation.

In many commercially developed oil reservoirs, water is injected in order to displace
the oil and increase recovery. However, in many oil reservoirs, the pore spaces also
include some formation or connate water, and this too may be displaced by the
injected fluid. Somewhat analogously, in geothermal reservoirs, cold water is injected
into the reservoir to displace the hot fluids drawn from the system, and thereby
maintain the heat exchange from the hot rock. In both systems, the injected fluid
typically has a different concentration from the formation water and this may induce
reactions with the porous matrix. Let us consider injection into a typical reservoir
of good permeability ∼ 10−12 m2, porosity 0.1, with a buoyancy contrast ∆ρl/ρ ∼ 0.1,
so that the typical buoyancy driven flow speed S ∼ 10−6 m s−1. For injection from a
horizontal well into a confined reservoir, the flow rate may be of order Q ∼ 10−5 m2 s−1

per unit length of the well. We thus find that γ = 10 m, and ω = 10−7 s−1, and so the
gravity-driven flow model becomes appropriate after about 107–108 s. Subsequently,
a laterally extensive gravity controlled reaction zone as described herein would be
expected to develop. This time scale may be comparable to the life of a particular
injection scheme, and so the model results may be useful in providing guidance on the
general morphology of any reaction zones produced by the injection process, although,
at earlier times the flow will be dominated by the pressure applied at the injection well.

6. Conclusions and discussion
We have developed a simplified quantitative model to describe the gravity-driven

flow of reaction fronts along the base of a homogeneous porous layer. Using the
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model, we have developed a series of similarity solutions which describe the evolution
of both dissolution and precipitation fronts. We have found that for dissolution
reactions, in which the permeability increases across the reaction, the reaction front
has an elongate finger-like shape along the base of the layer. In this regime, after
passing through the reaction front, the reacted fluid tends to accumulate in the
lower-permeability rock above the reaction front, while the reaction zone outruns
the reacted fluid along the base of the formation. In contrast, for a precipitation
reaction, the reaction front tends to remain close to the source of reacting liquid and
has a near vertical front at its leading edge. The reacted fluid then spreads ahead
of the reaction front into the higher-permeability rock. We have shown that if the
fluid undergoes a decrease in buoyancy associated with the reaction, then the reaction
front tends to spread more rapidly along the base of the formation, smoothing out
the discontinuity in the case of the precipitation reaction. We apply the model to
the natural flooding of an aquifer or reservoir with fluid of different composition
following the opening of a fracture from a higher-pressure source. We show that on
time scales of 10–1000 years, the model is able to describe the leading-order structure
of the reaction zone. For dissolution reactions, we predict that laterally extensive thin
bands of high permeability will develop adjacent to the impermeable boundaries of a
reservoir containing laterally extensive layers of high permeability.

There are several avenues for developing this work. For example, we plan to extend
the modelling approach to describe the dynamics of gravity-driven reaction fronts in
vertically layered reservoirs. In this situation, the reacting fluid may deepen beyond
the vertical distance between adjacent low-permeability horizons. It may also drain
through the low-permeability layers (cf. Pritchard, Woods & Hogg 2001). We also
plan to model the dynamics of reaction fronts in which the buoyancy of the reacted
fluid changes sign with respect to the formation fluid, as may occur if the solubility
of the injected fluid with respect to a particular mineral exceeds that of the formation
fluid.
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